RhSn is a topological semimetal with chiral fermions. At ambient pressure, it exhibits large positive magnetoresistance (MR) and field-induced resistivity upturn at low temperatures. Here we report on the electrical transport properties of RhSn single crystal under various pressures. We find that with increasing pressure the temperature-dependent resistivityρ(T) of RhSn varies minutely, whereas the value of MR at low temperatures decreases significantly. Theρ(T) data was fitted with the Bloch-Grüneisen model and the Debye temperature was extracted. Analyses of the nonlinear Hall conductivity with two-band model indicate that the carrier concentrations do not change significantly with pressure, but the mobilities for both electron and hole carriers are reduced monotonically, which can account for the significant reduction of MR under high pressures.
Keywords: high motilities; magnetoresistance; nonlinear Hall conductivity; pressure effect; topological semimetal.
© 2020 IOP Publishing Ltd.