Central α-Klotho Suppresses NPY/AgRP Neuron Activity and Regulates Metabolism in Mice

Diabetes. 2020 Jul;69(7):1368-1381. doi: 10.2337/db19-0941. Epub 2020 Apr 24.

Abstract

α-Klotho is a circulating factor with well-documented antiaging properties. However, the central role of α-klotho in metabolism remains largely unexplored. The current study investigated the potential role of central α-klotho to modulate neuropeptide Y/agouti-related peptide (NPY/AgRP)-expressing neurons, energy balance, and glucose homeostasis. Intracerebroventricular administration of α-klotho suppressed food intake, improved glucose profiles, and reduced body weight in mouse models of type 1 and 2 diabetes. Furthermore, central α-klotho inhibition via an anti-α-klotho antibody impaired glucose tolerance. Ex vivo patch clamp electrophysiology and immunohistochemical analysis revealed that α-klotho suppresses NPY/AgRP neuron activity, at least in part, by enhancing miniature inhibitory postsynaptic currents. Experiments in hypothalamic GT1-7 cells observed that α-klotho induces phosphorylation of AKTser473, ERKthr202/tyr204, and FOXO1ser256 as well as blunts AgRP gene transcription. Mechanistically, fibroblast growth factor receptor 1 (FGFR1) inhibition abolished the downstream signaling of α-klotho, negated its ability to modulate NPY/AgRP neurons, and blunted its therapeutic effects. Phosphatidylinositol 3 kinase (PI3K) inhibition also abolished α-klotho's ability to suppress food intake and improve glucose clearance. These results indicate a prominent role of hypothalamic α-klotho/FGFR1/PI3K signaling in the modulation of NPY/AgRP neuron activity and maintenance of energy homeostasis, thus providing new insight into the pathophysiology of metabolic disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agouti-Related Protein / physiology*
  • Animals
  • Cells, Cultured
  • Diabetes Mellitus, Experimental / drug therapy
  • Energy Metabolism
  • Glucose / metabolism
  • Glucuronidase / administration & dosage
  • Glucuronidase / physiology*
  • Infusions, Intraventricular
  • Klotho Proteins
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neurons / physiology*
  • Neuropeptide Y / physiology*
  • Phosphatidylinositol 3-Kinases / physiology
  • Receptor, Fibroblast Growth Factor, Type 1 / physiology
  • Signal Transduction / physiology

Substances

  • Agouti-Related Protein
  • Neuropeptide Y
  • Fgfr1 protein, mouse
  • Receptor, Fibroblast Growth Factor, Type 1
  • Glucuronidase
  • Klotho Proteins
  • Glucose