Generalized reliability based on distances

Biometrics. 2021 Mar;77(1):258-270. doi: 10.1111/biom.13287. Epub 2020 May 8.

Abstract

The intraclass correlation coefficient (ICC) is a classical index of measurement reliability. With the advent of new and complex types of data for which the ICC is not defined, there is a need for new ways to assess reliability. To meet this need, we propose a new distance-based ICC (dbICC), defined in terms of arbitrary distances among observations. We introduce a bias correction to improve the coverage of bootstrap confidence intervals for the dbICC, and demonstrate its efficacy via simulation. We illustrate the proposed method by analyzing the test-retest reliability of brain connectivity matrices derived from a set of repeated functional magnetic resonance imaging scans. The Spearman-Brown formula, which shows how more intensive measurement increases reliability, is extended to encompass the dbICC.

Keywords: Spearman-Brown formula; functional connectivity; intraclass correlation coefficient; test-retest reliability.

MeSH terms

  • Brain* / diagnostic imaging
  • Computer Simulation
  • Magnetic Resonance Imaging*
  • Reproducibility of Results