We report the synthesis and evaluation of a class of selective multitarget agents for the inhibition of HDAC6, HDAC8, and HDAC10. The concept for this study grew out of a structural analysis of the two selective inhibitors Tubastatin A (HDAC6/10) and PCI-34051 (HDAC8), which we recognized share the same N-benzylindole core. Hybridization of the two inhibitor structures resulted in dihydroxamic acids with benzyl-indole and -indazole core motifs. These substances exhibit potent activity against HDAC6, HDAC8, and HDAC10, while retaining selectivity over HDAC1, HDAC2, and HDAC3. The best substance inhibited the viability of the SK-N-BE(2)C neuroblastoma cell line with an IC50 value similar to a combination treatment with Tubastatin A and PCI-34051. This compound class establishes a proof of concept for such hybrid molecules and could serve as a starting point for the further development of enhanced HDAC6/8/10 inhibitors.
Keywords: HDAC10; HDAC8; inhibitors; polypharmacology; targeted therapy.
© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.