Genomic copy number variation correlates with survival outcomes in WHO grade IV glioma

Sci Rep. 2020 Apr 30;10(1):7355. doi: 10.1038/s41598-020-63789-9.

Abstract

Allele-specific copy number analysis of tumors (ASCAT) assesses copy number variations (CNV) while accounting for aberrant cell fraction and tumor ploidy. We evaluated if ASCAT-assessed CNV are associated with survival outcomes in 56 patients with WHO grade IV gliomas. Tumor data analyzed by Affymetrix OncoScan FFPE Assay yielded the log ratio (R) and B-allele frequency (BAF). Input into ASCAT quantified CNV using the segmentation function to measure copy number inflection points throughout the genome. Quantified CNV was reported as log R and BAF segment counts. Results were confirmed on The Cancer Genome Atlas (TCGA) glioblastoma dataset. 25 (44.6%) patients had MGMT hyper-methylated tumors, 6 (10.7%) were IDH1 mutated. Median follow-up was 36.4 months. Higher log R segment counts were associate with longer progression-free survival (PFS) [hazard ratio (HR) 0.32, p < 0.001], and overall survival (OS) [HR 0.45, p = 0.01], and was an independent predictor of PFS and OS on multivariable analysis. Higher BAF segment counts were linked to longer PFS (HR 0.49, p = 0.022) and OS (HR 0.49, p = 0.052). In the TCGA confirmation cohort, longer 12-month OS was seen in patients with higher BAF segment counts (62.3% vs. 51.9%, p = 0.0129) and higher log R (63.6% vs. 55.2%, p = 0.0696). Genomic CNV may be a novel prognostic biomarker for WHO grade IV glioma patient outcomes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Alleles
  • Brain Neoplasms / genetics*
  • Brain Neoplasms / pathology*
  • DNA Copy Number Variations / genetics*
  • Disease-Free Survival
  • Female
  • Genomics / methods
  • Glioblastoma / genetics*
  • Glioblastoma / pathology*
  • Glioma / genetics*
  • Glioma / pathology*
  • Humans
  • Male
  • Middle Aged
  • Multivariate Analysis
  • Progression-Free Survival