Bioassay-guided fractionation of the ethanol extract of whole herbs of Achillea alpina led to the isolation of isochlorogenic acids A and B as transient receptor potential vanilloid 3 (TRPV3) channel antagonists by using a calcium fluorescent assay. The structures were identified by spectroscopic analysis and the inhibitory activities of isochlorogenic acids A and B were confirmed by whole-cell patch clamp recordings of human embryonic kidney 293 (HEK293) cells expressing human TRPV3. Molecular docking results revealed that these two compounds reside in the same active pocket of human TRPV3 channel protein with lower binding energy than the agonist 2-aminoethoxydiphenyl borate (2-APB). High-speed counter-current chromatography (HSCCC) coupled with a liquid-liquid extraction approach was successfully established for the separation of isochlorogenic acids A and B from the whole herbs of A. alpina. Ethyl acetate and n-hexane-ethyl acetate-water (3:3:4 and 1:5:4, v/v/v) were selected as liquid-liquid extraction solvent systems to remove high- and low-polarity impurities in the mixture. Sixty g of ethanol extract was refined by solvent partition to yield 1.7 g of the enriched fraction, of which 480 mg in turn obtained 52.5 mg of isochlorogenic acid B (purity 98.3%) and 37.6 mg isochlorogenic acid A (purity 96.2%) after HSCCC with n-hexane-ethyl acetate-water containing 1% acetic acid (1:4:8, v/v/v).
Keywords: Achillea alpina; high-speed counter-current chromatography; isochlorogenic acid; liquid-liquid extraction; molecular docking; transient receptor potential vanilloid 3 channel.