Mantis-ml: Disease-Agnostic Gene Prioritization from High-Throughput Genomic Screens by Stochastic Semi-supervised Learning

Am J Hum Genet. 2020 May 7;106(5):659-678. doi: 10.1016/j.ajhg.2020.03.012.

Abstract

Access to large-scale genomics datasets has increased the utility of hypothesis-free genome-wide analyses. However, gene signals are often insufficiently powered to reach experiment-wide significance, triggering a process of laborious triaging of genomic-association-study results. We introduce mantis-ml, a multi-dimensional, multi-step machine-learning framework that allows objective assessment of the biological relevance of genes to disease studies. Mantis-ml is an automated machine-learning framework that follows a multi-model approach of stochastic semi-supervised learning to rank disease-associated genes through iterative learning sessions on random balanced datasets across the protein-coding exome. When applied to a range of human diseases, including chronic kidney disease (CKD), epilepsy, and amyotrophic lateral sclerosis (ALS), mantis-ml achieved an average area under curve (AUC) prediction performance of 0.81-0.89. Critically, to prove its value as a tool that can be used to interpret exome-wide association studies, we overlapped mantis-ml predictions with data from published cohort-level association studies. We found a statistically significant enrichment of high mantis-ml predictions among the highest-ranked genes from hypothesis-free cohort-level statistics, indicating a substantial improvement over the performance of current state-of-the-art methods and pointing to the capture of true prioritization signals for disease-associated genes. Finally, we introduce a generic mantis-ml score (GMS) trained with over 1,200 features as a generic-disease-likelihood estimator, outperforming published gene-level scores. In addition to our tool, we provide a gene prioritization atlas that includes mantis-ml's predictions across ten disease areas and empowers researchers to interactively navigate through the gene-triaging framework. Mantis-ml is an intuitive tool that supports the objective triaging of large-scale genomic discovery studies and enhances our understanding of complex genotype-phenotype associations.

Keywords: auto-ML; gene-prioritization; genomics; keras; machine-learning; mantis-ml; positive-unlabeled learning; tensorflow.

MeSH terms

  • Amyotrophic Lateral Sclerosis / genetics*
  • Animals
  • Area Under Curve
  • Deep Learning
  • Disease Models, Animal
  • Epilepsy / genetics*
  • Exome / genetics
  • Genetic Association Studies
  • Genomics / methods*
  • Humans
  • Mice
  • Neural Networks, Computer
  • ROC Curve
  • Renal Insufficiency, Chronic / genetics*
  • Reproducibility of Results
  • Stochastic Processes
  • Supervised Machine Learning*