Lactic acid bacteria (LAB) has been documented to promoting growth, enhancing immunity and disease resistance. In this study, we aimed to evaluate the single or conjoint effects of Lactococcus lactis L19 (Genbank: MT102745.1) and Enterococcus faecalis W24 (Genbank: MT102746.1) isolated from the intestine of Channa argus (C. argus) on growth performance, immune response and disease resistance of C. argus. A total of 720 apparently healthy C. argus (9.50 ± 0.03 g) were randomly divided into four equal groups. Fish were fed with a basal diet (CK) supplemented with L. lactis (L19), E. faecalis (W24), and L. lactis L19 + E. faecalis W24 (L + W) at 1.0 × 108 cfu/g basal diet for 56 days. After feeding, the final body weight (FBW), weight gain (WG), feed efficiency ratio (FER), specific growth rate (SGR) and protein efficiency ratio (PER) had significantly increased (p < 0.05), especially with L19. The results indicated that single or conjoint administration of LAB as potential probiotics can induce high levels of IgM, ACP, AKP, LZM, C3 and C4 activity in serum, which may effectively induce humoral immunity, and L19 induce even higher levels. Meanwhile, when compared to CK group, the results of qPCR showed that LAB administration significantly up-regulated (p < 0.05) the expression of IL-1β, IL-6, IL-10, TNF-α, IFN-γ, HSP70, HSP90, TGF-β in the spleen, head kidney, gill, liver and intestine of C. argus. After challenge with Aeromonas veronii, the survival rates in all LAB-fed groups were significantly higher (p < 0.05) than that of the CK group, and the L19 group showed the highest (63.3%) disease resistance. Our data indicated that L. lactis L19 and E. faecalis W24, as a feed additive at 1.0 × 108 cfu/g feed, could promote growth performance, enhance immune response and disease resistance of C. argus, with greatest effects in fish fed L. lactis L19 for 56 days. Hence, these LAB additives could be used as promising probiotics for C. argus. L19 was more effective than W24 or the mixture of the two for promoting growth performance, enhancing immune response and disease resistance of C. argus.
Keywords: Channa argus; Cytokines; Disease resistance; Growth performance; Immune responses; Lactic acid bacteria.
Copyright © 2020 Elsevier Ltd. All rights reserved.