Phage therapy has gained prominence due to the increasing pathogenicity of "super bugs" and the rise of their multidrug resistance to conventional antibiotics. Dry state formulation of therapeutic phage is attractive to improve their "druggability" by increasing their shelf life, improving their ease of handling, and ultimately retaining their long-term potency. The use and selection of excipients are critical to stabilize phage in solid formulations and protect their viability from stresses encountered during the solidification process and long-term storage prior to use. Here, this review focuses on the current classes of excipients used to manufacture dry state phage formulations and their ability to stabilize and protect phage throughout the process, as discussed in the literature. We provide perspective of outstanding challenges involved in the formulation of dry state phage. We suggest strategies to improve excipient identification and selection, optimize the potential excipient combinations to improve phage viability during formulation, and evaluate new methodologies that can provide greater insight into phage-excipient interactions to improve design criteria to improve formulation of dry state phage therapeutics. Addressing these challenges opens up new opportunities to re-design and re-imagine phage formulations for improved efficacy as a pharmaceutical product.
Keywords: dry state formulation; excipients; inhalation; phage therapy.