Staphylococcus aureus whole genome sequence-based susceptibility and resistance prediction using a clinically amenable workflow

Diagn Microbiol Infect Dis. 2020 Jul;97(3):115060. doi: 10.1016/j.diagmicrobio.2020.115060. Epub 2020 Apr 11.

Abstract

We used graphical user interface-based automated analytical tools from Next Gen Diagnostics (Mountain View, CA) and 1928 Diagnostics (Gothenburg, Sweden) to analyze whole genome sequence (WGS) data from 102 unique blood culture isolates of Staphylococcus aureus to predict antimicrobial susceptibly, with results compared to those of phenotypic susceptibility testing. Of 916 isolate/antibiotic combinations analyzed using the Next Gen Diagnostics tool, there were 9 discrepancies between WGS predictions and phenotypic susceptibility/resistance, including 8 for clindamycin and 1 for minocycline. Of 612 isolate/antibiotic combinations analyzed using the 1928 Diagnostics tool, there were 13 discrepancies between WGS predictions and phenotypic susceptibility/resistance, including 9 for clindamycin, 3 for trimethoprim-sulfamethoxazole, and 1 for rifampin. Trimethoprim-sulfamethoxazole was not assessed by Next Gen Diagnostics, and minocycline was not assessed by 1928 Diagnostics. There was complete concordance between phenotypic susceptibility/resistance and genotypic prediction of susceptibility/resistance using both analytical platforms for oxacillin, vancomycin, and mupirocin, as well as by the Next Gen Diagnostics analytical tool for levofloxacin (the 1928 Diagnostics tool did not assess levofloxacin). These results suggest that, from a performance standpoint, with some caveats, automatic bioinformatics tools may be acceptable to predict susceptibility and resistance to a panel of antibiotics for S. aureus.

Keywords: Antibiotics; Genome; Sequencing; Staphylococcus aureus.

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / genetics
  • Drug Resistance, Bacterial / drug effects
  • Drug Resistance, Bacterial / genetics
  • Genome, Bacterial / genetics*
  • Genotype
  • Humans
  • Microbial Sensitivity Tests / methods*
  • Software
  • Staphylococcal Infections / microbiology
  • Staphylococcus aureus / drug effects*
  • Staphylococcus aureus / genetics
  • Staphylococcus aureus / isolation & purification
  • Whole Genome Sequencing
  • Workflow

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins