Morphological transformation in the supramolecular assembly of discotic liquid crystal molecules using silver nanoparticles and its sensing application

Nanotechnology. 2020 Sep 4;31(36):365605. doi: 10.1088/1361-6528/ab93eb. Epub 2020 May 18.

Abstract

Triphenylene based discotic liquid crystal (TP) molecules are rich in π-electrons which facilitate π-stacking interaction of the molcules leading to formation of one dimensional nanowires. These nanowires can assemble to form nanoribbons due to a lateral cohesive force among the nanowires. The flat nanoribons undergo a morphological transformation due to incorporation of silver nanoparticles (SNP) into the matrix of TP molecules. The presence of SNP induces a chiral twisting to the nanoribbons and therefore the flat nanoribbons transform into a helical nanoribbon structure. The global chiral structure exhibited by the composition of achiral constituents is due to the creation of topological defects like disclination and dislocation. These defects can lead to a geometrical frustration in the nanoribbons which relaxes with the formation of twisted helical nanoribbons. A minor change in morphology of the supramolecular assembly can have a remarkable effect on the physicochemical properties of the nanoribbons. In this article, we demonstrate that even a minor change in the geometry of aliphatic chains on the surface of nanoribbons can be employed for sensing organic solvents such as acetone and ethanol. The sensing was performed at room temperature. Relative humidity has no effect on the sensing response.