Protein changes in synaptosomes of Huntington's disease knock-in mice are dependent on age and brain region

Neurobiol Dis. 2020 Jul:141:104950. doi: 10.1016/j.nbd.2020.104950. Epub 2020 May 19.

Abstract

Molecular changes at synapses are thought to underly the deficits in motor and cognitive dysfunction seen in Huntington's disease (HD). Previously we showed in synaptosome preparations age dependent changes in levels of selected proteins examined by western blot assay in the striatum of Q140/Q140 HD mice. To assess if CAG repeat length influenced protein changes at the synapse, we examined synaptosomes from 6-month old heterozygote HD mice with CAG repeat lengths ranging from 50 to 175. Analysis of 19 selected proteins showed that increasing CAG repeat length in huntingtin (HTT) increased the number of affected proteins in HD striatal synaptosomes. Moreover, SDS-soluble total HTT (WT plus mutant HTT) and pThr3 HTT were reduced with increasing CAG repeat length, and there was no pSer421 mutant HTT detected in any HD mice. A LC-MS/MS and bioinfomatics study of synaptosomes from 2 and 6-month old striatum and cortex of Q140/Q7 HD mice showed enrichment of synaptic proteins and an influence of age, gender and brain region on the number of protein changes. HD striatum at 6 months had the most protein changes that included many HTT protein interactors, followed by 2-month old HD striatum, 2-month old HD cortex and 6-month HD cortex. SDS-insoluble mutant HTT was detected in HD striatal synaptosomes consistent with the presence of aggregates. Proteins changed in cortex differed from those in striatum. Pathways affected in HD striatal synaptosomes that were not identified in whole striatal lysates of the same HD mouse model included axon guidance, focal adhesion, neurotrophin signaling, regulation of actin cytoskeleton, endocytosis, and synaptic vesicle cycle. Results suggest that synaptosomes prepared from HD mice are highly informative for monitoring protein changes at the synapse and may be preferred for assessing the effects of experimental therapies on synaptic function in HD.

Keywords: Cortex; David pathway analysis; Huntingtin; PDE10; Proteomics; SCN4B; Striatum; Synaptosomes; TMT mass spectrometry; Western blot.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Animals
  • Brain / metabolism*
  • Brain / ultrastructure
  • Disease Models, Animal
  • Female
  • Gene Knock-In Techniques
  • Huntingtin Protein / genetics
  • Huntington Disease / metabolism*
  • Male
  • Mice, Inbred C57BL
  • Neostriatum / metabolism
  • Neurons / metabolism
  • Neurons / ultrastructure
  • Phosphorylation
  • Synapses / metabolism*
  • Synapses / ultrastructure

Substances

  • HTT protein, human
  • Huntingtin Protein