Aquatic contamination of diclofenac (DCF), an emergent non-steroidal anti-inflammatory drug (NSAIDs), can result in adverse effects to many ecosystems through biomagnification. Hence, introducing effective remediation techniques to sequester the pharmaceutical wastes is highly fundamental to prevent their accumulation in the environment. Generally, adsorption has been presented as a green and efficient approach. Herein, we report the characterization and application of the novel magnetic nanocomposite (GO@CoFe2O4) derived from cobalt-based ferrite (CoFe2O4) and graphene oxide (GO) for DCF adsorption. For the optimization procedure, the response surface methodology (RSM) was adopted to investigate the impacts of DCF concentration (1.6-18.4 mg/L), DCF dosage (0.08-0.92 g/L), and solution pH (2.6-9.4) to find the optimum conditions for DCF removal, at 10.5 mg/L, 0.74 g/L, and pH 4, respectively. For the adsorption experiments, the kinetic, isotherm, thermodynamic, and intraparticle diffusion models were systematically studied. Moreover, we have elucidated the role of functional groups on the surface of GO@CoFe2O4 in enhancing the adsorption of DCF drug. With good removal efficiency (up to 86.1%), high maximum adsorption capacity (32.4 mg/g), GO@CoFe2O4 can be a potential candidate to eliminate DCF drug from water.
Keywords: Diclofenac sodium; Graphene oxide; Magnetic nanocomposite; Pharmaceuticals adsorption; Response surface methodology.
Copyright © 2020. Published by Elsevier B.V.