Objectives: Impaired wound healing is a major complication. A few factors such as blood glucose level, poor circulation, immune system deficiency, and infection are the root causes of impaired wound healing. The aim of the present study was to bio-synthesize copper nanoparticles with potential antibacterial activity against wound-associated pathogens.
Materials and methods: Copper nanoparticles were fabricated using the sol-gel method with the mixing of Syzigium cumini leaf extract in metal salt solution. The particles were then later characterized using UV spectroscopy, SEM, TEM, FTIR, and XRD, and evaluated for their antibacterial activity and its MIC against four wound-associated pathogens.
Results: The results obtained from TEM, SEM, and XRD characterization showed that the particle size was below 100 nm and of spherical shape. FTIR analysis showed the possibility of various biomolecules, which have a role in capping and stabilizing copper nanoparticles. The particles synthesized showed antibacterial activity against four wound-associated pathogens (P. mirabilis, S. saprophyticus, S. pyogenes, and P. aeruginosa).
Conclusion: The biosynthesized copper nanoparticles showed potent antimicrobial activity, thus the antibacterial activity of the synthesized copper nanoparticles could be used in several biomedical applications. Additionally, they can be exploited as a better therapeutic agent for treating infection seen in impaired diabetic wounds. The particles synthesized by the biological route are eco-friendly, less toxic, feasible, and cost effective.
Keywords: Nanoparticles; biomedical applications; biosynthesis; characterization; sol-gel process; wound-associated pathogens.
©Copyright 2018 Turk J Pharm Sci, Published by Galenos Publishing House.