The effect of various amounts of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the cure characteristics, mechanical and swelling behavior of XNBR/epoxy compounds was experimentally and theoretically investigated. The morphology of the prepared XNBR/epoxy/XHNTs nanocomposites was imaged using scanning electron microscopy (SEM). The effects of various XNBR-grafted nanotubes on the damping factor of nanocomposites were evaluated by dynamic mechanical thermal analysis (DMTA). The cure behavior characterization indicated a fall in the scorch time, but a rise in the cure rate with higher loading of XHNTs into the XNBR/epoxy nanocomposites. SEM micrographs of tensile fracture surfaces were indicative of a rougher fracture surface with a uniform dispersion state of nanotubes into the polymer matrix in the XNBR/epoxy/XHNTs nanocomposites. The stress-strain behavior studies of XNBR/epoxy/XHNTs nanocomposites showed a higher tensile strength up to 40% with 7 wt % XHNTs loading. The theoretical predictions of uniaxial tensile behavior of nanocomposites using Bergström-Boyce model revealed that some of the material parameters were considerably changed with the XHNTs loading. Furthermore, the used theoretical model precisely predicted the nonlinear large strain hyperelastic behavior of nanocomposites.
Keywords: Bergström–Boyce model; carboxylated nitrile butadiene rubber; epoxy; halloysite nanotubes; mechanical behavior; swelling.