Inorganic constituents in real wastewater, such as halides and carbonates/bicarbonates, may have negative effects on the performance of electrochemical systems because of their capability of quenching HO•. However, we discovered that the presence of Cl- and HCO3- in an electrochemical system is conducive to the formation of ClO•, which plays an important role in promoting the simultaneous elimination of biorefractory organics and nitrogen in secondary coking wastewater effluent. The 6-h operation of the coupled electrochemical system (an undivided electrolytic cell with a PbO2/Ti anode and a Cu/Zn cathode) at a current density of 37.5 mA cm-2 allowed the removal of 87.8% of chemical oxygen demand (COD) and 86.5% of total nitrogen. The electron paramagnetic resonance results suggested the formation of ClO• in the system, and the probe experiments confirmed the predominance of ClO•, whose steady-state concentrations (8.08 × 10-13 M) were 16.4, 26.5, and 1609.5 times those of Cl2•- (4.92 × 10-14 M), HO• (3.05 × 10-14 M), and Cl• (5.02 × 10-16 M), respectively. The rate constant of COD removal and the Faradaic efficiency of anodic oxidation obtained with Cl- and HCO3- was linearly proportional to the natural logarithm of the ClO• concentration, and the specific energy consumption was inversely correlated to it, demonstrating the crucial role of ClO• in pollutant removal.