Telechelic polymers contain two chain ends that are able to promote self-assembly into "flowerlike" or interconnected micellar structures. Here, we investigate the molecular exchange kinetics of such micelles using time-resolved small-angle neutron scattering. We show that the activation energies of monofunctional and telechelic chain exchange are identical. This demonstrates that the two chain ends are not simultaneously released in a single event. Instead, the results show that, contrary to regular micelles, the kinetics occurs in a multistep process involving a collision-induced single-molecule exchange mechanism where the exchange rate is directly proportional to the polymer concentration. We show that this novel mechanism can be quantitatively explained by a simple kinetic model.