Methylene blue (MB) has a protective effect on cognitive decline caused by chronic hypoperfusion, but the specific mechanism is not clear. This article aims to determine whether MB protects vascular neurons through PI3K/Akt and plays a role in improving cognitive impairment. Molecular biological methods, the hippocampal neuronal density test, the hippocampal vascular network density test, and dynamic enhanced magnetic resonance imaging (MRI) were used to detect the blood-brain barrier permeability and Evans blue leakage rate in the hippocampus. We also observed and evaluated the changes in the above results after administration of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway protein inhibitor LY294002. There were significant differences for cerebral blood flow (CBF) between the chronic cerebral hypoperfusion (CCH) + MB group (100 ml/100 g/min) and the CCH group (60 ml/100 g/min, P < 0.05). After using LY294002, the CBF of the CCH + MB + LY294002 group dropped to 82 ml/100 g/min. The vascular density in the CCH + MB group was 23%, which is significantly higher than that in the CCH group (15.1%) (P < 0.05). The vascular density (17.5%) in the CCH + MB + LY294002 group was significantly higher than that in the CCH group but lower than that in the CCH + MB group. Western blotting results showed that one week after intraperitoneal injection of MB, the expression of t-Akt and p-Akt in the CCH + MB group was increased after CCH, and LY294002 partially blocked this up-regulation effect (CCH + MB + LY294002 group). MB is a potential therapy for the relief of mild cognitive impairment associated with CCH, vascular dementia, and Alzheimer's disease.
Keywords: Chronic cerebral hypoperfusion; LY294002; Methylene blue; PI3K-Akt pathway.