The alpha-emitter 225Ac (t1/2 = 9.92 d) is currently under development for targeted alpha-particle therapy of cancer, and accelerator production of 225Ac via proton irradiation of thorium targets requires robust separations of 225Ac from chemically similar fission product lanthanides. Additionally, the lanthanide elements represent critical components in modern technologies, and radiolanthanides such as 140Nd (t1/2 = 3.37 d) also have potential application in the field of nuclear medicine. The ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Bmim][NTf2]), combined with the diglycolamide extractant, N,N-dioctyldiglycolamic acid (DODGAA), was adsorbed on macroporous resin support to produce a solvent impregnated resin (SIR) that was investigated for separations of 225Ac and lanthanides. The equilibrium distribution coefficients (Kd) of the rare earth elements (Sc(III), Y(III), Ln(III)), 225Ac(III), Th(IV), and U(VI) on the prepared DODGAA/[Bmim][NTf2]-SIR were determined from batch adsorption experiments in HCl and HNO3 media. The DODGAA/[Bmim][NTf2]-SIR exhibited preferential uptake of the heavier lanthanide elements while allowing for the separation of the lighter lanthanides. Column separations utilizing the DODGAA/[Bmim][NTf2]-SIR were effective at separating the lighter lanthanides from each other, and separating 225Ac from a mixture of lanthanides, 213Bi, and 225Ra without the need for additional complexing agents.
Keywords: Actinium-225; Extraction chromatography; Ionic liquid; Lanthanide separation; Solvent impregnated resin.
Copyright © 2020 Elsevier B.V. All rights reserved.