Growth Pattern, Stability, and Properties of Complexes of C2H5OH and n CO2 (n = 1-5) Molecules: A Theoretical Study

ACS Omega. 2020 Jun 10;5(24):14408-14416. doi: 10.1021/acsomega.0c00948. eCollection 2020 Jun 23.

Abstract

This work is dedicated to theoretically investigate the formation process of C2H5OH···nCO2 (n = 1-5) complexes and to shed light on the nature of interactions formed under the variation of CO2 concentration. It is found that CO2 molecules tend to locate around the polarized -OH group to interact with the lone pairs of the O atom. The interaction of ethanol with three CO2 molecules (C2H5OH···3CO2) induces the most stable structure in the sequence considered. The atoms in molecules (AIM), NCIplot, and natural bond orbital (NBO) analyses point out that the Oethanol···CCO2 tetrel bond overcomes hydrogen, chalcogen, and CO2···CO2 tetrel-bonded interactions and mainly contributes to the strength of C2H5OH···nCO2 (n = 1-5) complexes. All intermolecular interactions in the examined complexes are weakly noncovalent, and their positive cooperativity is evaluated to be slightly weaker than that of CO2 pure systems. SAPT2+ and molecular electrostatic potential (MEP) calculations indicate that the electrostatic force is the main factor underlying the attractive interplay in the complexes of C2H5OH and CO2.