Epithelial-to-Mesenchymal Transition (EMT) and Drug Response in Dynamic Bioengineered Lung Cancer Microenvironment

Adv Biosyst. 2019 Jan;3(1):e1800223. doi: 10.1002/adbi.201800223. Epub 2018 Nov 19.

Abstract

Tumor microenvironment and the interplay of physical and mechanical forces are key determinants of cancer initiation, progression, and response to drug treatment. However, the impact of tumor microenvironment on cancer progression is poorly understood, in large due to the lack of in vitro models that recapitulate the physical aspects of tumor microenvironment. Herein, a simple, dynamic 3D nonsmall cell lung carcinoma culture using a multichannel microfluidic model platform is developed for evaluating the contribution of flow-induced hydrodynamic shear stress on epithelial-to-mesenchymal transition (EMT). It is found that flow induces changes in cellular morphology and EMT in 2D and 3D when lung cancer A549 cells are cultured on a microfluidic chip under laminar flow for 4-5 days compared to traditional static cultures. The role of dynamic cell culture on chemotherapeutic effects is monitored. Drug response with an existing anti-cancer drug, e.g., erlotinib and an investigational drug (NSC-750212), shows distinct cytotoxic effects in flow compared to static cultures, suggesting a potential influence of flow on drug efficacy in 2D and 3D models. The platform demonstrates the ability to create a dynamic microscale tumor model, which could be explored as a tool for early drug screening and treatment monitoring in cancer and other diseases.

Keywords: cancer microenvironment; drug response; epithelial-to-mesenchymal transition (EMT); microfluidics; tumoroids.

Grants and funding