Background: There is a lack of biomarkers to identify glioblastoma (GBM) patients who may benefit from specific salvage therapies, such as the anti-angiogenic agent bevacizumab. We hypothesized that circulating blood counts may serve as biomarkers for treatment response and clinical outcomes.
Methods: Complete blood counts, clinical data, and radiographic information were collected retrospectively from 84 recurrent GBM patients receiving bevacizumab (10 mg/kg every 2 weeks). Significant biomarkers were categorized into quartiles and the association with clinical outcomes was assessed using the Kaplan-Meier method.
Results: The median treatment duration and survival on bevacizumab (OS-A) was 88 and 192 days, respectively. On multivariate analysis, MGMT promoter methylation (hazard ratio [HR] 0.504, P = .031), increases in red blood cells (HR 0.496, P = .035), and increases in eosinophils (HR 0.048, P = .054) during treatment predicted improved OS-A. Patients in the first and fourth quartiles of eosinophil changes had a 12-month survival probability of 5.6% and 41.2% (P < .0001), respectively. Treatment response was associated with increases in eosinophil counts (P = .009) and improved progression-free survival (P = .013). On multivariate analysis, increases in lymphocyte counts among responders predicted improved OS-A (HR 0.389, P = .044). Responders in the first and fourth quartiles of lymphocyte changes had a 12-month survival probability of 0% and 44.4% (P = .019), respectively. Changes in platelet counts differed before and after radiographic response (P = .014).
Conclusions: Changes in circulating eosinophil, lymphocyte, and platelet counts may predict treatment response and clinical outcomes in patients with recurrent GBM receiving bevacizumab.
Keywords: bevacizumab; biomarkers; blood cell counts; clinical outcomes; glioblastoma.
© The Author(s) 2020. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.