To inform targeted HIV testing, we developed and externally validated a risk-score algorithm that incorporated behavioral characteristics. Outpatient data from five health facilities in western Kenya, comprising 19,458 adults ≥ 15 years tested for HIV from September 2017 to May 2018, were included in univariable and multivariable analyses used for algorithm development. Data for 11,330 adults attending one high-volume facility were used for validation. Using the final algorithm, patients were grouped into four risk-score categories: ≤ 9, 10-15, 16-29 and ≥ 30, with increasing HIV prevalence of 0.6% [95% confidence interval (CI) 0.46-0.75], 1.35% (95% CI 0.85-1.84), 2.65% (95% CI 1.8-3.51), and 15.15% (95% CI 9.03-21.27), respectively. The algorithm's discrimination performance was modest, with an area under the receiver-operating-curve of 0.69 (95% CI 0.53-0.84). In settings where universal testing is not feasible, a risk-score algorithm can identify sub-populations with higher HIV-risk to be prioritized for HIV testing.
Keywords: HIV testing; Kenya; Risk-score algorithm.