The application of solid polymer electrolytes (SPEs) is still inherently limited by the unstable lithium (Li)/electrolyte interface, despite the advantages of security, flexibility, and workability of SPEs. Herein, the Li/electrolyte interface is modified by introducing Li2 S additive to harvest stable all-solid-state lithium metal batteries (LMBs). Cryo-transmission electron microscopy (cryo-TEM) results demonstrate a mosaic interface between poly(ethylene oxide) (PEO) electrolytes and Li metal anodes, in which abundant crystalline grains of Li, Li2 O, LiOH, and Li2 CO3 are randomly distributed. Besides, cryo-TEM visualization, combined with molecular dynamics simulations, reveals that the introduction of Li2 S accelerates the decomposition of N(CF3 SO2 )2 - and consequently promotes the formation of abundant LiF nanocrystals in the Li/PEO interface. The generated LiF is further verified to inhibit the breakage of CO bonds in the polymer chains and prevents the continuous interface reaction between Li and PEO. Therefore, the all-solid-state LMBs with the LiF-enriched interface exhibit improved cycling capability and stability in a cell configuration with an ultralong lifespan over 1800 h. This work is believed to open up a new avenue for rational design of high-performance all-solid-state LMBs.
Keywords: cryo-transmission electron microscopy; interfaces; lithium metal anodes; polymer electrolytes.
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.