This study investigated the effect of pH on the denaturation extent, the surface chemical composition, the water sorption isotherm and the glass transition temperature of camel and bovine whey protein's powders. The LC-MS analysis indicated that the β-Lactoglobulin was the most denatured protein in bovine whey powders regardless the pH value, while this protein was totally absent in camel whey. The α-Lactalbumin was relatively heat stable after drying and predominated the powder surface (X-ray photoelectron spectroscopy results) in both camel and bovine whey powders regardless the pH (neutral (6.7) or acidic (4.3 and 4.6)). Analysis of the water sorption isotherms indicated that decreasing the pH induced the increase of the water activity of lactose crystallization for camel and bovine whey powders. Finally, decreasing the pH led to the decrease of the glass transition temperature of camel and bovine whey powder (at 0.13, 0.23, and 0.33 of water activity).
Keywords: Camel whey proteins; Glass transition temperature; LC–MS; X-ray Photoelectron spectroscopy.
Copyright © 2020 Elsevier Ltd. All rights reserved.