Quantifying uncertainty in a predictive model for popularity dynamics

Phys Rev E. 2020 Jun;101(6-1):062311. doi: 10.1103/PhysRevE.101.062311.

Abstract

The Hawkes process has garnered attention in recent years for its suitability to describe the behavior of online information cascades. Here we present a fully tractable approach to analytically describe the distribution of the number of events in a Hawkes process, which, in contrast to purely empirical studies or simulation-based models, enables the effect of process parameters on cascade dynamics to be analyzed. We show that the presented theory also allows predictions regarding the future distribution of events after a given number of events have been observed during a time window. Our results are derived through a differential-equation approach to attain the governing equations of a general branching process. We confirm our theoretical findings through extensive simulations of such processes. This work provides the basis for more complete analyses of the self-exciting processes that govern the spreading of information through many communication platforms, including the potential to predict cascade dynamics within confidence limits.