Starch nanocrystals (SNCs) grafted with octenyl succinic anhydride (OSA) were used to stabilize caprylic/capric triglycerides (GTCC)-in-water emulsions. The morphology and viscoelasticity of emulsions were studied in terms of particle loadings and degrees of substitution (DSs). It is found that the emulsifying capacities of SNCs increase with increased DSs. Both the pristine SNC and modified ones can be well used to stabilize emulsions, whereas the emulsification follows different mechanisms. The platelet-like structure of SNCs, together with its improved amphiphilicity after surface treatments, are important to the formation and evolution of droplet clusters. The deformation and relaxation of those clusters result in weak flow overshoots and strong thixotropy in different shear flow fields, which favor storage and applications of GTCC-in-water emulsions as hydrocolloids. The mechanisms were then discussed in terms of rigidity of SNC and relaxations of clusters. This work proposes a promising application of SNC in food and cosmetic industries.
Keywords: Degree of substitution; Pickering emulsions; Rheology; Starch nanocrystals.
Copyright © 2020 Elsevier Ltd. All rights reserved.