Major stratospheric sudden warmings (SSWs) are the largest instance of wintertime variability in the Arctic stratosphere. Due to their relevance for the troposphere-stratosphere system, several previous studies have focused on their potential response to anthropogenic forcings. However, a wide range of results have been reported, from a future increase in the frequency of SSWs to a decrease. Several factors might explain these contradictory results, notably the use of different metrics for the identification of SSWs, and the impact of large climatological biases in single-model studies. Here we revisit the question of future SSWs changes, using an identical set of metrics applied consistently across 12 different models participating in the Chemistry Climate Model Initiative. From analyzing future integrations we find no statistically significant change in the frequency of SSWs over the 21st century, irrespective of the metric used for the identification of SSWs. Changes in other SSWs characteristics, such as their duration and the tropospheric forcing, are also assessed: again, we find no evidence of future changes over the 21st century.