New Series of Double-Modified Colchicine Derivatives: Synthesis, Cytotoxic Effect and Molecular Docking

Molecules. 2020 Aug 2;25(15):3540. doi: 10.3390/molecules25153540.

Abstract

Colchicine is a well-known anticancer compound showing antimitotic effect on cells. Its high cytotoxic activity against different cancer cell lines has been demonstrated many times. In this paper we report the syntheses and spectroscopic analyses of novel colchicine derivatives obtained by structural modifications at C7 (carbon-nitrogen single bond) and C10 (methylamino group) positions. All the obtained compounds have been tested in vitro to determine their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX, and BALB/3T3 cell lines. The majority of obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin and cisplatin against the tested cancerous cell lines. Additionally, most of the presented derivatives were able to overcome the resistance of LoVo/DX cells. Additionally, their mode of binding to β-tubulin was evaluated in silico. Molecular docking studies showed that apart from the initial amides 1 and 2, compound 14, which had the best antiproliferative activity (IC50 = 0.1-1.6 nM), stood out also in terms of its predicted binding energy and probably binds best into the active site of βI-tubulin isotype.

Keywords: anticancer agents; colchicine derivatives; docking studies; reductive alkylation; tubulin inhibitors.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology
  • Cell Line, Tumor
  • Chemistry Techniques, Synthetic*
  • Colchicine / chemical synthesis*
  • Colchicine / chemistry
  • Colchicine / pharmacology*
  • Dose-Response Relationship, Drug
  • Drug Design
  • Humans
  • Mice
  • Molecular Docking Simulation*
  • Molecular Dynamics Simulation
  • Molecular Structure
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Colchicine