Neutron grating interferometer with an analyzer grating based on a light blocker

Opt Express. 2020 Aug 3;28(16):23284-23293. doi: 10.1364/OE.391678.

Abstract

We study an analyzer grating based on a scintillation light blocker for a Talbot-Lau grating interferometer. This is an alternative way to analyze the Talbot self-image without the need for an often difficult to fabricate absorption grating for the incident radiation. The feasibility of this approach using a neutron beam has been evaluated and experiments have been conducted at the cold neutron imaging facility of the NIST center for Neutron Research. The neutron grating interferometer with the proposed analyzer grating successfully produced attenuation, differential phase, and dark-field contrast images. In addition, numerical simulations were performed to simulate the Talbot pattern and visibility using scintillation screens of different thicknesses and there is good agreement with the experimental measurements. The results show potential for reducing the difficulty of fabricating analyzer grating, and a possibility for the so-called shadow effect to be eliminated and large-area gratings to be produced, especially when applied to X-rays. We report the performance of the analyzer grating based on a light blocker and evaluate its feasibility for the grating interferometer.