Conventional amide synthesis is a mainstay in discipline-spanning applications, and it is a reaction type that historically developed as a singular paradigm when considering the carbon-nitrogen bond-forming step. Umpolung amide synthesis (UmAS) exploits the unique properties of an α-halo nitroalkane in its reaction with an amine to produce an amide. The "umpolung" moniker reflects its paradigm-breaking C-N bond formation on the basis of evidence that the nucleophilic nitronate carbon and electrophilic nitrogen engage to form a tetrahedral intermediate (TI) that is an unprecedented functional group, a 1,1,1-halo-amino-nitro alkane (HANA). Studies probing HANA transience have failed to capture this (presumably) highly reactive intermediate. We report here the direct observation of a HANA, its conversion thermally to an amide functionality, and quantitative analysis of this process using computational techniques. These findings validate the HANA as a functional group common to UmAS and diverted UmAS, opening the door to its targeted use and creative manipulation.