Psoriasis is a chronic inflammatory disorder with cutaneous and systemic manifestations and substantial negative effects on patients' quality of life. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play a role in the pathogenesis of psoriasis. Previously studies, from others and by us, highlighted specific miRNAs that are dysregulated in psoriatic lesions. MicroRNA-197-3p (miR-197) expression is downregulated in psoriatic lesions compared to normal or uninvolved skin in patients with psoriasis. We have previously reported that miR-197 could modulate IL-22 and IL-17 signalling in psoriasis. Herein, we identify additional biochemical targets of miR-197 in psoriasis. We applied a transcriptome-wide biochemical approach, Protein argonaute-2 photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (Ago2 PAR-CLIP), to search for new targets of miR-197 in live keratinocytes, and validated its results using reporter assay and analysing by Western blot protein levels in cells overexpressing miR-197. Ago2 PAR-CLIP identified biochemical targets of miR-197, including the alpha subunit of the IL-6 receptor (IL6R). This work provides evidence that IL6R in bona-fide biochemical target of miR-197. IL6R is known to be up-regulated in psoriasis and even was considered as a possible therapeutic target. From the present data and our previous studies, it appears that miR-197 is a major regulator of the interaction between immune system cells and keratinocytes.
Keywords: IL6R; PAR-CLIP; keratinocytes; miR-197; psoriasis.
© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.