Placental mammals present 180 million-year-old Y chromosomes that have retained a handful of dosage-sensitive genes. However, the expression evolution of Y-linked genes across placental groups has remained largely unexplored. Here, we expanded the number of Y gametolog sequences by analyzing ten additional species from previously unexplored groups. We detected seven remarkably conserved genes across 25 placental species with known Y repertoires. We then used RNA-seq data from 17 placental mammals to unveil the expression evolution of XY gametologs. We found that Y gametologs followed, on average, a 3-fold expression loss and that X gametologs also experienced some expression reduction, particularly in primates. Y gametologs gained testis specificity through an accelerated expression decay in somatic tissues. Moreover, despite the substantial expression decay of Y genes, the combined expression of XY gametologs in males is higher than that of both X gametologs in females. Finally, our work describes several features of the Y chromosome in the last common mammalian ancestor.
Keywords: Y chromosome; dosage compensation mechanisms; gene expression levels; placental mammals; sex chromosomes.
© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.