The inhibitory effects of metabolites from Bacillus pumilus on potato virus Y and the induction of early response genes in Nicotiana tabacum

AMB Express. 2020 Aug 20;10(1):152. doi: 10.1186/s13568-020-01089-1.

Abstract

To develop a new antiviral preparation from a microbial source, the halophilic bacterium Bacillus pumilus E303035 was isolated from a soil sample collected at Qarhan Salt Lake in Qinghai, China. The inhibitory activity of an ethyl acetate extract of its fermentation broth was higher than that of an n-butanol extract. After isolation and purification, 9 compounds were obtained: cyclo(L-Leu-L-Pro) (1), cyclo(L-Pro-L-Tyr) (2), Brevianamide F (3), 2-(3-Indolyl) ethanol (4), N-[2-(1H-indol-3-yl) ethyl] acetamide (5), 3, 3-di(1H-indol-3-yl)propane-1,2-diol (6), Lincomycin B (7), dibutylphthalate (8), and p-hydroxyphenethyl alcohol (9). Compounds 1, 5, and 9 showed inhibitory activities against potato virus Y (PVY). Compounds 1, 4, and 9 had significant inhibitory activity against genes HC-pro, P3, and Nib, compound 5 against gene P3, and compounds 1 and 4 against NIa. Compounds 1, 4, 5, and 9 had significant inhibitory activity against genes VPg and 6K1. Active compounds 1, 5, and 9 had various effects on the expression of viral genes related to pathogenesis. Expression of genes cullin and XTH was up-regulated and CP was down-regulated, compared to the positive control. In conclusion, compounds 1, 5, and 9 might be considered as potential antiviral agents for future development.

Keywords: Active compounds; Early response genes; Halophilic bacterium Bacillus pumilus; Inhibitory activity; Potato Virus Y genes encoding viral proteins.