Applying a 6 DoF Robotic Arm and Digital Twin to Automate Fan-Blade Reconditioning for Aerospace Maintenance, Repair, and Overhaul

Sensors (Basel). 2020 Aug 18;20(16):4637. doi: 10.3390/s20164637.

Abstract

The UK is home to several major air commercial and transport hubs. As a result, there is a high demand for Maintenance, Repair, and Overhaul (MRO) services to ensure that fleets of aircraft are in airworthy conditions. MRO services currently involve heavy manual labor. This creates bottlenecks, low repeatability, and low productivity. Presented in this paper is an investigation to create an automation cell for the fan-blade reconditioning component of MRO. The design and prototype of the automation cell is presented. Furthermore, a digital twin of the grinding process is developed and used as a tool to explore the required grinding force parameters needed to effectively remove surface material. An integration of a 6-DoF industrial robot with an end-effector grinder and a computer vision system was undertaken. The computer vision system was used for the digitization of the fan-blade surface as well as tracking and guidance of material removal. Our findings reveal that our proposed system can perform material removal, track the state of the fan blade during the reconditioning process and do so within a closed-loop automated robotic work cell.

Keywords: Industry 4.0; analytics; automation; computer vision; digital twin.