Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance

Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22473-22483. doi: 10.1073/pnas.2003700117. Epub 2020 Aug 26.

Abstract

Human fungal infections may fail to respond to contemporary antifungal therapies in vivo despite in vitro fungal isolate drug susceptibility. Such a discrepancy between in vitro antimicrobial susceptibility and in vivo treatment outcomes is partially explained by microbes adopting a drug-resistant biofilm mode of growth during infection. The filamentous fungal pathogen Aspergillus fumigatus forms biofilms in vivo, and during biofilm growth it has reduced susceptibility to all three classes of contemporary antifungal drugs. Specific features of filamentous fungal biofilms that drive antifungal drug resistance remain largely unknown. In this study, we applied a fluorescence microscopy approach coupled with transcriptional bioreporters to define spatial and temporal oxygen gradients and single-cell metabolic activity within A. fumigatus biofilms. Oxygen gradients inevitably arise during A. fumigatus biofilm maturation and are both critical for, and the result of, A. fumigatus late-stage biofilm architecture. We observe that these self-induced hypoxic microenvironments not only contribute to filamentous fungal biofilm maturation but also drive resistance to antifungal treatment. Decreasing oxygen levels toward the base of A. fumigatus biofilms increases antifungal drug resistance. Our results define a previously unknown mechanistic link between filamentous fungal biofilm physiology and contemporary antifungal drug resistance. Moreover, we demonstrate that drug resistance mediated by dynamic oxygen gradients, found in many bacterial biofilms, also extends to the fungal kingdom. The conservation of hypoxic drug-resistant niches in bacterial and fungal biofilms is thus a promising target for improving antimicrobial therapy efficacy.

Keywords: Aspergillus fumigatus; antifungals; drug resistance; hypoxia; oxygen.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antifungal Agents / pharmacology*
  • Aspergillus fumigatus* / drug effects
  • Aspergillus fumigatus* / physiology
  • Biofilms / drug effects*
  • Cell Hypoxia
  • Cellular Microenvironment* / drug effects
  • Cellular Microenvironment* / physiology
  • Drug Resistance, Fungal*
  • Oxygen / pharmacology

Substances

  • Antifungal Agents
  • Oxygen