Rapid evolution of traits and of plasticity may enable adaptation to climate change, yet solid experimental evidence under natural conditions is scarce. Here, we imposed rainfall manipulations (+30%, control, -30%) for 10 years on entire natural plant communities in two Eastern Mediterranean sites. Additional sites along a natural rainfall gradient and selection analyses in a greenhouse assessed whether potential responses were adaptive. In both sites, our annual target species Biscutella didyma consistently evolved earlier phenology and higher reproductive allocation under drought. Multiple arguments suggest that this response was adaptive: it aligned with theory, corresponding trait shifts along the natural rainfall gradient, and selection analyses under differential watering in the greenhouse. However, another seven candidate traits did not evolve, and there was little support for evolution of plasticity. Our results provide compelling evidence for rapid adaptive evolution under climate change. Yet, several non-evolving traits may indicate potential constraints to full adaptation.
Keywords: Biscutella didyma; Aridity gradient; climate change; drought; phenology; phenotypic plasticity; rainfall manipulation; rapid evolution; reproductive allocation; selection analysis.
© 2020 John Wiley & Sons Ltd.