Properties of protein unfolded states suggest broad selection for expanded conformational ensembles

Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23356-23364. doi: 10.1073/pnas.2003773117. Epub 2020 Sep 2.

Abstract

Much attention is being paid to conformational biases in the ensembles of intrinsically disordered proteins. However, it is currently unknown whether or how conformational biases within the disordered ensembles of foldable proteins affect function in vivo. Recently, we demonstrated that water can be a good solvent for unfolded polypeptide chains, even those with a hydrophobic and charged sequence composition typical of folded proteins. These results run counter to the generally accepted model that protein folding begins with hydrophobicity-driven chain collapse. Here we investigate what other features, beyond amino acid composition, govern chain collapse. We found that local clustering of hydrophobic and/or charged residues leads to significant collapse of the unfolded ensemble of pertactin, a secreted autotransporter virulence protein from Bordetella pertussis, as measured by small angle X-ray scattering (SAXS). Sequence patterns that lead to collapse also correlate with increased intermolecular polypeptide chain association and aggregation. Crucially, sequence patterns that support an expanded conformational ensemble enhance pertactin secretion to the bacterial cell surface. Similar sequence pattern features are enriched across the large and diverse family of autotransporter virulence proteins, suggesting sequence patterns that favor an expanded conformational ensemble are under selection for efficient autotransporter protein secretion, a necessary prerequisite for virulence. More broadly, we found that sequence patterns that lead to more expanded conformational ensembles are enriched across water-soluble proteins in general, suggesting protein sequences are under selection to regulate collapse and minimize protein aggregation, in addition to their roles in stabilizing folded protein structures.

Keywords: IDPs; autotransporter; protein folding; secretion; unfolded states.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Bacterial Outer Membrane Proteins / chemistry*
  • Bacterial Outer Membrane Proteins / genetics
  • Bacterial Outer Membrane Proteins / metabolism
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Bordetella pertussis / chemistry
  • Bordetella pertussis / genetics
  • Bordetella pertussis / metabolism*
  • Protein Conformation
  • Protein Folding
  • Protein Unfolding*
  • Scattering, Small Angle
  • Virulence Factors, Bordetella / chemistry*
  • Virulence Factors, Bordetella / genetics
  • Virulence Factors, Bordetella / metabolism

Substances

  • Bacterial Outer Membrane Proteins
  • Bacterial Proteins
  • Virulence Factors, Bordetella
  • pertactin