Multifunctional and tunable trigate graphene metamaterial with "Lakes of Wada" topology

Opt Express. 2020 Aug 17;28(17):24772-24788. doi: 10.1364/OE.398346.

Abstract

Many plasmon-induced transparency (PIT) metamaterials previously reported had limited functions. Their tunabilities were realized by complex discrete structures, which greatly increased the difficulty and cost of device fabrication and adversely affected their resonance characteristics. It is an open question to adjust the Fermi levels of many graphene patterns with only a few in-plane electrodes. We propose and numerically study a novel electrically tunable and multifunctional trigate graphene metamaterial (TGGM) based on the concept of "Lakes of Wada". Benefiting from the trigate regulation, our proposed TGGM turns out to exhibit excellent characteristics, that can not only be used for terahertz band-stop filter, terahertz refractive index sensor, near-field optical switch, slow-light device, but also for double PIT window metamaterial with broad transparency windows and large tunable frequency range.