Kalirin-7 contributes to type 2 diabetic neuropathic pain via the postsynaptic density-95/N-methyl-D-aspartate receptor 2B-dependent N-methyl-D-aspartate receptor 2B phosphorylation in the spinal cord in rats

Am J Transl Res. 2020 Aug 15;12(8):4819-4829. eCollection 2020.

Abstract

Objective: Diabetic neuropathic pain (DNP) is one of the common complications in type 2 Diabetes Mellitus (DM) patients. However, molecular mechanisms in underlying diabetic neuropathic pain are still poorly understood. Kalirin-7, a multifunctional Rho GDP/GTP exchange factor, located at the excitatory synapses, was reported to modulate the neuronal cytoskeleton. Therefore, in this study, we explored the effects of Kalirin-7 on type 2 diabetic neuropathic pain and the mechanisms in spinal cord in rats.

Methods: The type 2 diabetic neuropathic pain model was established in rats by feeding them with a high-sugar and high-fat diet for 8 weeks, and then fasting them for 12 hours, followed by a single intraperitoneal injection of STZ. Kalirin-7 was knocked down in the spinal cord by an intrathecal administration of Kalirin-7 siRNA.

Results: The levels of Kalirin-7, p-NR2B and PSD-95 as well as the PSD-95-NR2B coupling were significantly increased in the spinal cord of type 2 DM rats. The knockdown of Kalirin-7 expression in the spinal cord by the intrathecal administration of Kalirin-7 siRNA not only reduced the levels of p-NR2B and the PSD-95-NR2B coupling in the spinal cord, but also relieved mechanical allodynia and thermal hyperalgesia in type 2 DM rats.

Conclusions: Our findings suggest that spinally expressed Kalirin-7 likely contributes to type 2 diabetic neuropathic pain through regulating the PSD-95/NR2B interaction-dependent NR2B phosphorylation in the spinal cord.

Keywords: Kalirin-7; PSD-95-NR2B; Type 2 diabetes mellitus; neuropathic pain; p-NR2B.