Backgrounds: Myocardial ischemia-reperfusion injury (MI-RI) has many adverse complications with high mortality rate. In the current study, we investigated the therapeutic advantages of delivering Interleukin-37 (IL-37) by induced cardiospheres (iCS), generated from adult skin fibroblasts via somatic reprogramming, in treating the mice model MI-RI.
Methods: The mouse model of MI-RI was established and the iCS cells with IL-37 overexpression (iCS-IL37) were transplanted into the mice via tail-vein injection. Left ventricular (LV) dimensions and LV pressure-volume measurements were assessed by parasternal long-axis echocardiography and hemodynamic assessment. The infarct size was determined by histology analysis. And the inflammatory responses were analyzed by using enzyme-linked immunosorbent assay (ELISA).
Results: The LV function was significantly improved after the iCS-IL37 transplantation when compared to the vehicle control group and iCS group, including the end-systolic pressure and dP/dtMax. Furthermore, the infarct size was significantly decreased after the iCS-IL37 transplantation. The protein levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), were down-regulated by the iCS-IL37 transplantation.
Conclusion: The present study indicated that the iCS with IL-37 overexpression had therapeutic effects on the mice model of MI-RI.
Keywords: IL-37; Induced cardiospheres; MI-RI; Myocardial ischemia-reperfusion injury; iCS.
Copyright © 2020. Published by Elsevier B.V.