Climate warming can restructure lake food webs if trophic levels differ in their thermal responses, but evidence for these changes and their underlying mechanisms remain scarce in nature. Here we document how warming lake temperatures by up to 2°C, rather than changes in trophic state or fishing effort, have restructured the pelagic food web of a large European lake (Lake Maggiore, Italy). Our approach exploited abundance and biomass data collected weekly to yearly across five trophic levels from 1981 to 2008. Temperature generally had stronger effects on taxa than changes in fish predation or trophic state mediated through primary productivity. Consequently, we found that, as the lake warmed, the food web shifted in numerical abundance towards predators occupying middle trophic positions. Of these taxa, the spiny water flea (Bythotrephes longimanus) most prospered. Bythotrephes strongly limited abundances of the keystone grazer Daphnia, strengthening top-down structuring of the food web. Warmer temperatures partly restructured the food web by advancing peak Bythotrephes densities by approximately 60 days and extending periods of positive population growth by three times. Nonetheless, our results suggested that advances in the timing and size of peak Bythotrephes densities could not outpace changes in the timing and size of peak densities in their Daphnia prey. Our results provide rare evidence from nature as to how long-term warming can favour higher trophic levels, with the potential to strengthen top-down control of food webs.
Keywords: causal networks; climate change; food webs; oligotrophication; phenology; population dynamics.
© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.