Cytochrome P450 2D (CYP2D) mediates the activation and inactivation of several classes of psychoactive drugs, including opioids, which can alter drug response. Tramadol is a synthetic opioid with analgesic activity of its own as well as being metabolically activated by CYP2D to O-desmethyltramadol (ODMST) an opioid receptor agonist. We investigated the impact of brain CYP2D metabolism on central tramadol and ODSMT levels, and resulting analgesic response after oral tramadol administration in rats. CYP2D inhibitors propranolol and propafenone were administered intracerebroventricularly prior to oral tramadol administration and analgesia was measured by tail-flick latency. Drug levels of tramadol and its metabolites, ODSMT and N-desmethyltramadol, were assessed in plasma and in brain by microdialysis using LC-ESI-MS/MS. Inhibiting brain CYP2D with propafenone pretreatment increased analgesia after oral tramadol administration (ANOVA p = 0.02), resulting in a 1.5-fold increase in area under the analgesia-time curve (AUC0-60, p < 0.01). This effect was associated with changes in the brain levels of tramadol and its metabolites consistent with brain CYP2D inhibition. In conclusion, under oral tramadol dosing pretreatment with a central administration of the CYP2D inhibitor propafenone increased analgesia (without altering plasma drug or metabolite levels), indicating that tramadol itself (and activity of CYP2D within the brain) contributed to analgesia.
Keywords: Analgesia; Brain; Cytochrome P450; Metabolism; Opioids; Tramadol.
Copyright © 2020 Elsevier Inc. All rights reserved.