Background: Anti-viral treatments to control cytomegalovirus (CMV) after lung transplantation (LTx) are associated with toxicity and anti-viral resistance. Cellular immunotherapy with virus-specific cytotoxic T cells has yielded promising results but requires donor/recipient matching. γδ T cells are involved in anti-viral immunity and can recognize antigens independently of major histocompatibility complex molecules and may not require the same level of matching. We assessed the phenotype of circulating γδ T cells after LTx to identify the candidate populations for CMV immunotherapy.
Methods: Peripheral blood mononuclear cells were isolated from lung transplant recipients before transplantation and at routine bronchoscopies after LTx. Patients were stratified by risk of CMV disease into moderate risk (recipient CMV seropositive, n = 15) or high risk (HR) (recipient CMV seronegative/donor CMV seropositive, n = 10). CMV replication was classified as polymerase chain reaction positive (>150 copies/ml) in blood and/or bronchoalveolar lavage within the first 18 months. The phenotype of γδ T cells was assessed by multicolor flow cytometry, and T-cell receptor (TCR) sequences were determined by deep sequencing.
Results: In HR lung transplant recipients with CMV replication, we observed striking phenotypic changes in γδ T cells, marked by an increase in the proportion of effector Vδ1+ γδ T cells expressing the activating natural killer cell receptor NKG2C. Moreover, we observed a remarkable increase in TCR diversity.
Conclusions: NKG2C+ Vδ1+ γδ T cells were associated with CMV replication and may indicate their potential to control infection. As such, we propose that they could be a potential target for cellular therapy against CMV.
Keywords: NKG2C; cytomegalovirus; lung transplantation; γδ T cell receptor; γδ T cells.
Copyright © 2020 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.