NRAS mutation is rarely observed in non-small cell lung cancer (NSCLC) patients, and there are no approved treatments for NRAS-mutant NSCLC. Here, we evaluated the effect of pan-RAF inhibitors on human NRAS-mutant NSCLC cell lines and performed high-throughput screening using human kinome small interfering (si)RNA or CRISPR/Cas9 libraries to identify new targets for combination NSCLC treatment. Our results indicate that human NRAS-mutant NSCLC cells are moderately sensitive to pan-RAF inhibitors. High-throughput kinome screenings further showed that G2/M arrest, particularly following knockdown of polo-like kinase 1 (PLK1), can inhibit the growth of human NRAS-mutant NSCLC cells and those treated with the type II pan-RAF inhibitor LXH254. In addition, treatment with volasertib plus LXH254, resulting in dual blockade of PLK1 and pan-RAF, was found to be more effective than LXH254 monotherapy for inhibiting long-term cell viability, suggesting that this combination therapeutic strategy may lead to promising results in the clinic.
Keywords: High-throughput screening; NRAS-mutant lung cancer; PLK1 inhibitor; Pan-RAF inhibitor.
Copyright © 2020 Elsevier B.V. All rights reserved.