The dorsolateral prefrontal cortex (DLPFC), a key structure in the executive system, has consistently emerged as a crucial element in the pathophysiology of obsessive-compulsive disorder (OCD). However, the neural primacy of the DLPFC remains elusive in this disorder. We investigated the causal interaction (measured by effective connectivity) between the DLPFC and the remaining brain areas using bivariate Granger causality analysis of resting-state fMRI collected from 88 medication-free OCD patients and 88 matched healthy controls. Additionally, we conducted seed-based functional connectivity (FC) analyses to identify network-level neural functional alterations using the bilateral DLPFC as seeds. OCD patients demonstrated reduced FC between the right DLPFC and right orbitofrontal cortex (OFC), and activity in the right OFC had an inhibitory effect on the right DLPFC. Additionally, we observed alterations in both feedforward and reciprocal influences between the inferior temporal gyrus (ITG) and the DLPFC in patients. Furthermore, activity in the cerebellum had an excitatory influence on the right DLPFC in OCD patients. These findings may help to elucidate the psychopathology of OCD by detailing the directional connectivity between the DLPFC and the rest of the brain, ultimately helping to identify regions that could serve as treatment targets in OCD.
Keywords: Dorsolateral prefrontal cortex; Effective connectivity; Functional connectivity; Granger causality analysis; Obsessive-compulsive disorder.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.