Infection by enveloped viruses includes endocytosis and/or membrane fusion at the plasma membrane, where host cell proteases play an essential role. Among them, elastase-mediated infection has been documented for several enveloped viruses. Porcine reproductive and respiratory syndrome virus (PRRSV), an economically critical factor in global swine industry, is previously reported to infect host cells via low pH-dependent clathrin-mediated endocytosis (CME) and undergo membrane fusion in recycling endosomes. In the current study, we identified that elastase was significantly elevated in the lung tissues of highly pathogenic PRRSV (HP-PRRSV)-infected pigs compared to the mock-infected ones. We subsequently demonstrated that elastase contributed to HP-PRRSV infection in both MARC-145 cells and porcine alveolar macrophages (PAMs). Mechanistically, HP-PRRSV entered host cells at the cell surface via elastase-mediated membrane fusion, independent of low pH and CME, and its glycoprotein 5 (GP5) was cleaved by the protease during this process. All these findings deepen our understanding of HP-PRRSV infection, and are beneficial for prevention and control of the disease.
Keywords: Elastase; GP5; HP-PRRSV; Infection; Membrane fusion.
Copyright © 2020 Elsevier B.V. All rights reserved.