Bovine respiratory disease (BRD) has a complex pathogenesis and aetiology, being the costliest disease affecting the cattle industry in North America. In this study, we applied Nanopore-based viral metagenomic sequencing to explore the nasal virome of cattle upon arrival at feedlot and related the findings to the development of BRD. Deep nasal swabs (DNS) from 310 cattle for which BRD outcomes were known (155 cattle developed BRD within 40 days and 155 remained healthy) were included. The most prevalent virus in on-arrival samples was bovine coronavirus (BCV) (45.2%, 140/310), followed by bovine rhinitis virus B (BRBV) (21.9%, 68/310), enterovirus E (EVE) (19.6%, 60/310), bovine parainfluenza virus 3 (BPIV3) (10.3%, 32/310), ungulate tetraparvovirus 1 (UTPV1) (9.7%, 30/310) and influenza D virus (7.1%, 22/310). No relationship was found between BRD development and the number of viruses detected, the presence of any specific individual virus or combination of viruses. Bovine kobuvirus (BKV) was detected in 2.6% of animals (8/310), being the first report of this virus in Canada. Results of this study demonstrate the diversity of viruses in bovine DNS collected upon arrival at feedlot and highlights the need for further research into prediction of BRD development in the context of mixed infections.
Keywords: bovine coronavirus; bovine kobuvirus (BKV); bovine respiratory disease (BRD); influenza D virus (IDV); nanopore sequencing; nasal virome.
© 2020 Wiley-VCH GmbH.