Neuroimaging studies have revealed atypical activation during language and executive tasks in individuals with autism spectrum disorders (ASD). However, the spatiotemporal stages of processing associated with these dysfunctions remain poorly understood. Using an anatomically constrained magnetoencephalography approach, we examined event-related theta oscillations during a double-duty lexical decision task that combined demands on lexico-semantic processing and executive functions. Relative to typically developing peers, high-functioning adolescents with ASD had lower performance accuracy on trials engaging selective semantic retrieval and cognitive control. They showed an early overall theta increase in the left fusiform cortex followed by greater activity in the left-lateralized temporal (starting at ~250 ms) and frontal cortical areas (after ~450 ms) known to contribute to language processing. During response preparation and execution, the ASD group exhibited elevated theta in the anterior cingulate cortex, indicative of greater engagement of cognitive control. Simultaneously increased activity in the ipsilateral motor cortex may reflect a less lateralized and suboptimally organized motor circuitry. Spanning early sensory-specific and late response selection stages, the higher event-related theta responsivity in ASD may indicate compensatory recruitment to offset inefficient lexico-semantic retrieval under cognitively demanding conditions. Together, these findings provide further support for atypical language and executive functions in high-functioning ASD.
Keywords: MEG; Theta oscillations; autism; cognitive control; language.
© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.