Salmonella and Escherichia coli are the main bacterial species involved in food outbreaks worldwide. Recent reports showed that chemical sanitizers commonly used to control these pathogens could induce antibiotic resistance. Therefore, this study aimed to describe the efficiency of chemical sanitizers and organic acids when inactivating wild and clinical strains of Salmonella and E. coli, targeting a 4-log reduction. To achieve this goal, three methods were applied. (i) Disk-diffusion challenge for organic acids. (ii) Determination of MIC for two acids (acetic and lactic), as well as two sanitizers (quaternary compound and sodium hypochlorite). (iii) The development of inactivation models from the previously defined concentrations. In disk-diffusion, the results indicated that wild strains have higher resistance potential when compared to clinical strains. Regarding the models, quaternary ammonium and lactic acid showed a linear pattern of inactivation, while sodium hypochlorite had a linear pattern with tail dispersion, and acetic acid has Weibull dispersion to E. coli. The concentration to 4-log reduction differed from Salmonella and E. coli in acetic acid and sodium hypochlorite. The use of organic acids is an alternative method for antimicrobial control. Our study indicates the levels of organic acids and sanitizers to be used in the inactivation of emerging foodborne pathogens.
Keywords: acetic acid; lactic acid; multi-drug resistance; quaternary of ammonium; sodium hypochlorite.